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The advection-diffusion equation is a well-known PDE which can capture
advection and diffusion effects that are popular in the physical world. It can
be used in fluid mechanics (Navier-Stokes equation), stochastic differential
theory (Fokker-Planck equation), finance modeling (Black-Scholes equation),
etc. The equation can be written as below:
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Where N1 and N2 are the advection and diffusion coefficients, respectively.
There are some interesting characteristics for advection-diffusion equation

which we will explore below in an probabilistic context. Assume we have an
initial condition of a standard normal probability density function. The
boundary is set to be [-20 20] for numerical computation which is actually
infinite, and also an reflecting boundary is employed [1].

Assume timestart = 0, dt = 0.01, N1 = 100, N2 = 1 as the standard
parameters.

First of all, we can change the advection coeffcient to see its effect. As
can be seen in Fig. 1, positive N1 would shift to right and negative N1 would
shift to left. The advection coeffecient can be understood as the moving
velocity of a particle. The moving distance is 5 with velocity 500 and time
0.01 second as can be seen on the bottom right plot.

Similarly, the effect of diffusion coefficient can be shown in Fig. 2. With
positive diffusion coefficient, the shape of the function would diffuse to have
a larger spreadness. However, negative diffusion coefficient which indicating
concentration would render the equation ill-posed and difficult to solve the
problem. It can be categorized as a backward heat equation. It’s common
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Figure 1: Effects of changing advection coefficient.
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to see high frequency oscillations in the solution, that’s because the nega-
tive diffusion process behaves like differention to make the solution coarser
than initial condition. However, positive diffusion process behaves like inte-
gration to make the solution smoother than initial condition [3]. Numerous
techniques have been proposed to overcome this ill-posed problem, and reg-
ularization is one of them, see ref [2].

Furthermore, negative diffusion coefficient is an inverse process which
might have multiple possible solutions. Only equation with very small neg-
ative diffusion coefficient would be solved. Regarding this specific problem,
the smallest possible value of N2 is -0.2. Solution with negative diffusion
coefficient would have smaller standard deviation due to concentration effect
(standard deviation=0.998).

Figure 2: Effects of changing diffusion coefficient.

Furthermore, the effect of changing starting time is shown in Fig. 3. It
is observed that starting time doesn’t have influence on the result.
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Figure 3: Effects of changing starting time.

The effect of changing the incremental time is shown in Fig. 4. It is seen
that longer incremental time would both advect and diffuse the function
along time.

Figure 4: Effects of changing incremental time.

Below is the main.m script file.

c l c ; c l e a r ;
l e f tbound=−20; r ightbound=20; meshpoint=2000;
s t re s smesh=l i n s p a c e ( le f tbound , rightbound , meshpoint ) ;
% standard normal assumption ;
u00=exp(− s t re s smesh .∗ s t re s smesh /2)/ sq r t (2∗ pi ) ;
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t ime s t a r t =10; dt =0.01;
N1=100; N2=1;

[ s o l ]=solve FPK (u00 , N1 , N2 , t imes tar t , dt , l e f tbound , rightbound , meshpoint ) ;

p l o t ( stressmesh , u00 , ’b ’ ) ; hold on ;
p l o t ( stressmesh , so l , ’ k ’ ) ; g r i d on ;
legend ( ’ i n i t i a l cond i t i on at t=0 ’ , ’ s o l u t i o n at t =0.01 ’ )
t i t l e ( ’N 1=100 , N 2=1 ’ )

Below is the solve FPK function file

f unc t i on [ s o l ]=solve FPK (u00 , N1 , N2 , t imes tar t , t imeincrement smal l , l e f tbound ,
rightbound , meshpoint )

x = l i n s p a c e ( le f tbound , rightbound , meshpoint ) ;
t = l i n s p a c e ( t imestar t , t ime s t a r t+t ime increment smal l , 1 01 ) ;
m = 0 ;
s o l u t i o n = pdepe (m, @pdex1pde , @pdex1ic , @pdex1bc , x , t ) ;
s o l=s o l u t i o n ( end , : ) ;

f unc t i on [ c , f , s ] = pdex1pde (x , t , u ,DuDx)
c = 1 ;
f = N2∗DuDx;
s = −N1∗DuDx;

end

func t i on u0 = pdex1ic ( x )
u0=in t e rp1 ( l i n s p a c e ( le f tbound , rightbound , meshpoint ) , u00 , x ) ;

end

func t i on [ pl , ql , pr , qr ] = pdex1bc ( xl , ul , xr , ur , t )
p l = N1∗ ul ;
q l = −1;
pr = N1∗ur ;
qr = −1;

end

end
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